[re:Invent23] Knowledge bases for Amazon Bedrock
쉽고 경제적인 RAG 구축을 위한 Knowledge Bases for Amazon Bedrock 안내서 LLM이 질문에 대한 답변을 생성하는 과정에서 사실과는 다른 환각 현상이 발생할 수 있습니다. 환각을 최소화하기 위해 RAG(Retrieval Augmented Generation)라는 방법이 Meta에 의해 도입되었는데요. LLM이 입력을 받으면 특정 소스에서 관련한 문서를 찾아 context에 추가하고, 해당 정보를 토대로 최종 출력을 반환하게 되는 구조입니다. RAG를 통해서 Fine-Tuning을 하지 않고도 제한적인...
[re:Invent23] Agents for Amazon Bedrock
테크니컬 라이팅을 위한 AI 어시스턴트 구축하기 (Feat. ReAct, Agents for Amazon Bedrock) LLM이 발달해오면서 어떻게 LLM을 효율적으로 쓸 수 있을지에 대한 논의가 활발하게 이루어졌고, Prompt Engineering, RAG, Fine-Tuning 등 다양한 기법이 도입돼 왔습니다. 여러 기법 중에서도 가장 접근이 쉬우며, 구현을 위한 별다른 비용이 들지 않는 Prompt Engineering을 통해 많은 개발자와 연구자들은 복잡한 작업에 대한 LLM의 추론 능력을 향상시켜 왔습니다....
최신 댓글